在所熟知的材料之中,鐵電柵場效應(yīng)晶體管(Ferroelectric gate field-effect transistors, FeFETs)做新一代閃存是很有前途的。
通常,鐵電體與一種存儲器類型——鐵電存儲器ferroelectric RAMs (FRAMs) 有關(guān)。 20世紀90年代后期,由幾家供應(yīng)商推出的FRAM是低功耗、非易失性設(shè)備,但它們也于小眾應(yīng)用,無法在130納米以上擴展。
FRAM繼續(xù)生產(chǎn)的同時,業(yè)界也在開發(fā)另一種類型的鐵電存儲器。 FeFET及其相關(guān)技術(shù)沒有使用傳統(tǒng)FRAM使用的材料,而是利用氧化鉿(也稱為鐵電鉿氧化物)的鐵電特性。(FeFET和邏輯晶體管FinFET不同)。
不過,就研發(fā)階段而論,FeFET本身并不是一個新器件。對于FeFET,其主要原理是在現(xiàn)有的邏輯晶體管上采用基于氧化鉿基的High-K(高K)柵電介質(zhì)+Metal Gate(金屬柵)電極疊層技術(shù),然后將柵極絕緣體改性成具有鐵電性質(zhì)。得到的FeFET晶體管具有相同的結(jié)構(gòu),但是具有可擴展、低功率和非易失性等特性。從理論上講,應(yīng)該比當(dāng)前的嵌入式閃存更好。
圖1:FeFET制作流程。 來源:Ferroelectric Memory Co.
很多研究者正在研究不同類型的基于FeFET的非易失性器件。這聽起來是一個簡單的概念,但是有幾個關(guān)鍵挑戰(zhàn),比如集成、數(shù)據(jù)保存、可靠性和成本等問題。 Forward Insights的分析師Greg Wong說:“FeFETs是很有前景,但目前為時尚早。”
當(dāng)然還有其他的挑戰(zhàn)。Ferroelectric Memory Co.(FMC)公司正在開發(fā)FeFET,其執(zhí)行官StefanMüller表示:“對于新興的存儲器技術(shù),難的部分是要客戶確信你的解決方案真實可靠。”
盡管如此,FeFET及其相關(guān)技術(shù)正在蒸蒸日上,以下是其the most recent進展:
•GlobalFoundries,FMC,NaMLab,Fraunhofer等已經(jīng)在22納米FD-SOI工藝中演示了一種嵌入式非易失性FeFET,取得了一個重要里程碑。 雖然沒有生產(chǎn)時間表,但該技術(shù)將在2019年獲得認證。
•Imec正在開發(fā)一種方案,用鐵電鉿氧化物取代目前的DRAM材料,創(chuàng)造出一類新的非易失性DRAM類存儲器。 此外,Imec也正在開發(fā)類似于3D NAND的堆疊式鐵電器件。
•SK Hynix,Lam Research,Versum等近發(fā)表了一篇關(guān)于這類器件的開關(guān)機制的論文,其中一個小組稱之為1T-FeRAM和一個3D FeNAND。
•越來越多的團隊正在探索下一代基于鐵電鉿氧化物的邏輯晶體管類型,通常被稱為負電容場效應(yīng)晶體管(NC-FET)。 NC-FET是3nm及以上晶體管的潛在技術(shù)。
3D FeNAND,鐵電DRAM和NC-FET還處于研發(fā)的早期階段,這些技術(shù)是否能夠投入生產(chǎn)還言之過早。 GlobalFoundries,FMC等企業(yè)是開發(fā)的FeFET的大試驗場。
如果它成功了,FeFET將進入下一代內(nèi)存市場這個擁擠的領(lǐng)域。而其他新的存儲器類型,如3D XPoint、Magnetoresistive RAM、ReRAM甚至傳統(tǒng)的FRAM都正在出貨中。很大程度上,FeFET將與這些技術(shù)中的某些類型展開競爭。
下一代內(nèi)存競賽
多年來業(yè)界一直在開發(fā)下一代內(nèi)存類型,理由很簡單:傳統(tǒng)的內(nèi)存有各種各樣的限制。
例如,用作系統(tǒng)主存儲器的DRAM快速便宜,但DRAM在系統(tǒng)關(guān)閉電源時會丟失數(shù)據(jù)。
NAND和NOR閃存也很便宜。 Flash是非易失性的,即使在電源關(guān)閉的情況下也可以存儲數(shù)據(jù)。但是,在操作中,閃存會經(jīng)歷幾個讀/寫周期,這是一個緩慢的過程。
這正是新閃存適用的地方。一般來說,下一代存儲器類型是快速的、非易失性的并可以提供無限的續(xù)航能力。它們還提供可變位、無擦除的功能,使其成為DRAM和閃存的理想替代品。但是這些新的記憶也依賴于異域材料和復(fù)雜的轉(zhuǎn)換機制,所以他們需要花費更長的時間來開發(fā)。與此同時,行業(yè)不斷擴大DRAM和閃存規(guī)模,使得新的存儲器類型難以在市場上站穩(wěn)腳跟。
不過,行業(yè)內(nèi)一些新類型的內(nèi)存正在開始增加。這里有一個簡單的圖景:
•英特爾和美光正在推出基于相變存儲器的下一代3D XPoint技術(shù)。3D XPoint是一個獨立的器件,用于加速固態(tài)硬盤(SSD)的操作。
•Everspin和其他公司正在開發(fā)自旋轉(zhuǎn)矩磁阻RAM(STT-MRAM)的下一代MRAM技術(shù)。 STT-MRAM用于嵌入式或獨立應(yīng)用,利用電子自旋產(chǎn)生的磁性在芯片中提供非易失性。
•幾家供應(yīng)商和代工廠正在為獨立的嵌入式應(yīng)用開發(fā)電阻式RAM(ReRAM)。 在ReRAM中,將電壓施加到材料疊層上,從而記錄電阻變化產(chǎn)生的數(shù)據(jù)。
•賽普拉斯,富士通,松下,德州儀器和其他公司正在推出帶嵌入式FRAM的微控制器(MCU)。
圖2:自旋扭矩MRAM技術(shù)。 來源:Everspin
圖3:ReRAM。 來源:Adesto
FRAM被廣泛誤解,因為鐵電材料不是鐵磁性的。FMC公司的Müller解釋說:“鐵電存儲器僅使用電場來寫入應(yīng)用程序,沒有電流流過。所有其他新出現(xiàn)的存儲器,如電阻式RAM、相變存儲器和MRAM都是通過驅(qū)動存儲器單元的電流來寫入的。
FRAM利用鐵電晶體的鐵電效應(yīng)實現(xiàn)數(shù)據(jù)存儲。鐵電效應(yīng)是指在鐵電晶體上施加一定的電場時,晶體中心原子在電場的作用下運動,并達到一種穩(wěn)定狀態(tài);當(dāng)電場從晶體移走后,中心原子會保持在原來的位置。這是由于晶體的中間層是一個高能階,中心原子在沒有獲得外部能量時不能越過高能階到達另一穩(wěn)定位置,因此FRAM保持數(shù)據(jù)不需要電壓,也不需要像DRAM一樣周期性刷新。由于鐵電效應(yīng)是鐵電晶體所固有的一種偏振極化特性,與電磁作用無關(guān),所以FRAM存儲器的內(nèi)容不會受到外界條件(諸如磁場因素)的影響,能夠同普通ROM存儲器一樣使用,具有非易失性的存儲特性和無限的耐用性,非常適合各種嵌入式芯片應(yīng)用。
通常,FRAM由基于鋯鈦酸鉛(PZT)的薄層鐵電薄膜組成。 Cypress說,PZT中的原子在電場中改變極性,從而形成功率的二進制開關(guān)。
圖4:傳統(tǒng)的FRAM 來源:Cypress
然而,FRAM有一些問題。穆勒說:“經(jīng)典的FRAM從材料的角度來看是異乎尋常的。由于只有平面電容器可以使用,傳統(tǒng)的鐵電薄膜不可擴展,FRAM還沒有超出130納米技術(shù)節(jié)點。這阻止了傳統(tǒng)FRAM被廣泛采用。”
由于FeFET與傳統(tǒng)FRAM不同,支持者希望解決這些問題。 幾年前,這個行業(yè)偶然有了一個新的發(fā)現(xiàn),即氧化鉿中的鐵電性質(zhì)。 研究人員發(fā)現(xiàn),在摻雜氧化鉿的過程中,晶相可以穩(wěn)定。 FMC公司稱:“在這個晶相中,氧化鉿的氧原子可以存在于兩個穩(wěn)定的位置,根據(jù)外加電場的極性向上或向下移動。”
氧化鉿是一種廣為人知的材料。 一段時間以來,芯片制造商已經(jīng)使用氧化鉿作為28nm及以上邏輯器件中的高k /金屬柵極結(jié)構(gòu)的柵極堆疊材料。 對于FeFET,主要是利用鐵電鉿氧化物的特性,而不是使用特殊材料創(chuàng)建新的器件結(jié)構(gòu)。
例如,在FMC的技術(shù)中,The ideal的是采用現(xiàn)有的晶體管。然后使用沉積工藝,將硅摻雜的氧化鉿材料沉積到晶體管的柵極疊層中,產(chǎn)生鐵電性質(zhì)。 FMC的方案也消除了對電容器的需求,使單晶體管存儲單元或1T-FeFET技術(shù)成為可能。
Müller說:“在FeFET中,permanent偶極子形成在本身內(nèi)柵介質(zhì),將鐵電晶體管的閾值電壓分成兩個穩(wěn)定的狀態(tài),因此,二進制狀態(tài)可以存儲在FeFET中,就像在閃存單元中做的一樣。”
圖5:FeFET(n型): 當(dāng)鐵電極化向下(左)時,電子反轉(zhuǎn)溝道區(qū)域,permanently 使FeFET進入“導(dǎo)通”狀態(tài)。 如果極化點朝上(中間),則permanently積累,并且FeFET處于“關(guān)”狀態(tài)。 來源:FMC。
從理論上講,該技術(shù)是令人信服的。“每個晶體管都有氧化鉿。這是門電介質(zhì)。如果巧妙地做到這一點,并改性氧化鉿,實際上可以將邏輯晶體管轉(zhuǎn)換為非易失性晶體管,而這種晶體管在斷開電源時會失去一個狀態(tài)。斷電后仍然可以保持狀態(tài)。”
FeFET仍處于研發(fā)階段,尚未準備好迎接黃金時代。 但如果確實有效的話,消費者在下一代的閃存世界中還有另一種選擇。 3D XPoint、FRAM、MRAM、ReRAM等也在備選之中。
那么,哪種新的內(nèi)存技術(shù)會占上風(fēng)呢? 這并不清楚,因為沒有一個內(nèi)存可以處理所有的要求。 每個新的內(nèi)存類型都有它的特點。 新型存儲器正在從傳統(tǒng)的存儲器中蠶食一些市場。但總的來說,傳統(tǒng)的DRAM和NAND繼續(xù)在存儲器層次上占主導(dǎo)地位。
圖6:內(nèi)存金字塔 來源:Imec
嵌入式內(nèi)存戰(zhàn)爭
在儲存空間方面,新興戰(zhàn)場正在嵌入式市場形成。如今的MCU在同一芯片上集成了多個組件,如CPU、SRAM和嵌入式存儲器。 CPU負責(zé)執(zhí)行指令。芯片上集成了SRAM以存儲數(shù)據(jù)。
嵌入式存儲器(如EEPROM和NOR閃存)用于代碼存儲和其他功能。Objective Analysis分析師Jim Handy在近的一次采訪中表示:“用EEPROM,每一個字節(jié)都是兩個晶體管。每個字節(jié)都可以被擦除或重新編程。在每個模塊上(NOR閃存),我們有一個巨大的晶體管對所有字節(jié)進行擦除。與每字節(jié)兩個晶體管相比,巨大的晶體管仍然可以節(jié)省大量的芯片空間。”
嵌入式閃存(eFlash)功能強大,非常適合工業(yè)應(yīng)用。 例如,汽車原始設(shè)備制造商有嚴格的要求,而NOR也符合這個要求。 聯(lián)華電子美國銷售副總裁Walter Ng表示:“汽車MCU是受性能驅(qū)動的,這也是eFlash的推動力。
NOR有一些限制,因為寫入速度很慢。 NOR從40nm移動到28nm也變得越來越昂貴。目前還不清楚NOR能否擴展到28nm以上。
下一代閃存的供應(yīng)商希望*。新興的RAM似乎提供了一個可能的解決方案。但是,汽車界如何接受這樣的技術(shù)還有待觀察。”
不管怎樣,嵌入式內(nèi)存市場正在升溫。幾家代工廠如GlobalFoundries,三星,臺積電和聯(lián)電正在開發(fā)嵌入式STT-MRAM。 另外,中芯,臺積電和聯(lián)電也正在開發(fā)嵌入式ReRAM。
FeFET是這個領(lǐng)域的新產(chǎn)物。 2009年,Fraunhofer,GlobalFoundries和NaMLab開始探索FeFET。 后來,FMC從NaMLab中獨立出來。
2014年,該小組展示了一個基于28nm CMOS工藝的簡單FeFET陣列。 然后,在近的IEDM會議上,GlobalFoundries,Fraunhofer,NaMLab和FMC提出了新的結(jié)果,使FeFET更接近商業(yè)化。
該小組在22納米FD-SOI工藝中展示了嵌入式FeFET。 GlobalFoundries技術(shù)官Gary Patton表示:“制造非常密集內(nèi)存的方法相對成本較低。”
根據(jù)IEDM論文,FeFET的單元尺寸小到0.025μm²。 該器件由一個32MB的陣列組成,其編程/擦除脈沖在4.2V的10ns范圍內(nèi)。 它具有高達300°C的保溫率。
初,FeFET的目標是針對消費類應(yīng)用的嵌入式非易失性存儲器市場。“寫入速度比傳統(tǒng)的eFlash要快兩個數(shù)量級左右。 我們在10ns,regime在1ms至10ms。”FMC的穆勒說。
技術(shù)是有可能實現(xiàn)的。 Imec杰出的技術(shù)人員Jan Van Houdt說:“他們比其他人走得更遠。 他們現(xiàn)在就推進者嵌入式方案,這可能會起作用。”
在溫度要求更嚴格的汽車嵌入式存儲器領(lǐng)域,FeFET面臨著艱難的競爭。汽車OEM廠商確實正在研究STT-MRAM,因為該技術(shù)可以承受更高的溫度。
接下來呢?
就其本身而言, Imec 正在兩條方向上發(fā)展鐵電技術(shù)。一個包含一種新型的非易失性的類似 DRAM, 而另一個是獨立的存儲設(shè)備, 類似于3D NAND。
DRAM 是基于1T1C 的細胞結(jié)構(gòu)。在操作中, 當(dāng)晶體管關(guān)閉時, 電容器中的電荷會泄漏或放電。因此, 電容器必須每64毫秒刷新一次, 即使這會消耗系統(tǒng)中的電能。
在 DRAM 的垂直電容器結(jié)構(gòu)中, 有一個金屬-絕緣體-金屬的材料堆棧(metal-insulator-metal :MIM)。在 MIM 堆棧中, 高K材料夾在兩個二氧化鋯層之間,所以這種電容器有時也被稱為 ZAZ 電容器。
Imec 和其他機構(gòu)都在探索把DRAM 中的二氧化鋯材料用鐵電氧化鉿代替,因為氧化鉿在鐵電狀態(tài)下類似于二氧化鋯。
利用以上技術(shù), Imec 正在研發(fā)具有非易失性的鐵電類似 DRAM 裝置, 它不需要進行刷新操作。
當(dāng)然過程中不乏挑戰(zhàn)。對于DRAM,在任一節(jié)點上縮放垂直1T1C 電容器都很難。垂直1T1C 電容器的縮放在每個節(jié)點上都很難進行。 因為鐵電類似 DRAM 裝置也具有1T1C 細胞結(jié)構(gòu),所以這個操作不會變得簡單。
圖7: DRAM 路線圖 來源:Imec
另一種可能性是,該行業(yè)可以開發(fā)具有非易失性的單晶體管(1T)類DRAM器件。 這是一個無電容器的鐵電DRAM類器件。但即便使用鐵電鉿,鐵電DRAM也面臨一些挑戰(zhàn)。“問題是它有一些限制。DRAM幾乎擁有無限的續(xù)航能力。通過鐵電體這一點已經(jīng)得到證實。”Imec公司的Van Houdt說。
Imec也在追求類似3D NAND的鐵電器件技術(shù)。這種技術(shù)有時被稱為3D FeNAND,采用基于3D NAND的制造流程。
Van Houdt說:“它是低電壓和非易失性的。功耗也要低得多,因為它是一個高k材料,它會更快,所以要比NAND驅(qū)動更多的電流,這是NAND替代品。 當(dāng)然,要取代NAND幾乎是不可能的。”
所以,如果它可行,該器件可能會出于圖6的儲存器等級金字塔的某個地方。但是技術(shù)距離進入商業(yè)市場還會有五到十年的時間。
不過還存在其他的問題。 例如,在IEDM的一篇論文中,SK Hynix,Lam及其它公司發(fā)現(xiàn),由于外部問題,鐵電鉿材料的實際開關(guān)速度比預(yù)期的要慢。
SK Hynix,Lam及其它公司發(fā)現(xiàn)了一種控制硅摻雜氧化鉿晶粒尺寸的方法,這反過來又提高了材料組的速度。 “我們成功地證明了Si:HfO2是由具有Ec?0.5MV / cm的具有FE性質(zhì)的受控納米晶體組成的,它是普通Si:HfO2的一半,并且疇轉(zhuǎn)換速度比普通晶粒大小的Si:HfO2快三倍。”
什么是NC-FET?
鐵電鉿氧化物還有其他用途。一段時間以來,加州大學(xué)伯克利分校和其他一些學(xué)院繼續(xù)研究NC-FET,這是一款針對3nm或更高頻率的下一代邏輯晶體管。
像FeFET一樣,NC-FET不是一個新器件。在NC-FET中,現(xiàn)有晶體管中的柵極疊層用鐵電鉿氧化物進行改性。與FeFET相比,NC-FET的膜厚略有不同。
應(yīng)用材料公司晶體管和互連集團總監(jiān)Mike Chudzik說:“這就是樂趣所在,只是一個簡單的鐵電介質(zhì)交換。我會把它沿著FET隧道布置。”
NC-FET具有亞閾值斜率,應(yīng)用在低功耗領(lǐng)域。它將與隧道場效應(yīng)管(TFET)的競爭更多,TFET是一種針對3納米及以上的低功率晶體管。
“從根本上說,鐵電就像個電壓放大器。 你放一個電壓,因為它相互作用的方式,它就會放大電壓。 這就是為什么你得到這個增強的亞閾值斜率。”Chudzik說。
基于這項技術(shù), 加州大學(xué)伯克利分校正在探索將現(xiàn)今的 FinFET 和 FD SOI 技術(shù)擴展到2nm。他們將新的技術(shù)稱作NC-finFET 和NC-FD-SOI。
可以肯定的是, NC FET仍處于發(fā)展初期。Chudzik 說: “它的研究雖然充滿可能性和樂趣, 但也有很多懸而未決的問題。”
但從短期來看,FeFET是這些有前途的材料組合中可能先實現(xiàn)的技術(shù),這反過來又可能在這個領(lǐng)域內(nèi)掀起一股研發(fā)浪潮。否則就像其他技術(shù)一樣,也會被晾在路邊。
來源:本文由半導(dǎo)體行業(yè)觀察翻譯自Semiengineering,謝謝。
原文鏈接: 由于受限于發(fā)布規(guī)則,無法直接發(fā)布鏈接,原文在 semiengineering(點)com/a-new-memory-contender
歡迎您加我微信了解更多信息
微信掃一掃